Piramidalismo post accidente cerebro vascular isquémico idiopático: reporte de caso
DOI:
https://doi.org/10.26820/reciamuc/7.(2).abril.2023.768-778Palabras clave:
Accidente Cerebrovascular Isquémico, Evolución Clínica, Isquemia Encefálica, Manejo de Caso, Terapéutica, Tractos PiramidalesResumen
El índice de mortalidad de los pacientes que han sufrido un accidente cerebro vascular isquémico es elevado, pero el índice de pacientes con secuelas neurológicas y motoras debido a la lesión focalizada del cerebro es aún mayor. Los pacientes que sobreviven a la isquemia encefálica producida por una lesión cerebral focal necesitan cuidados crónicos para recuperarse o por lo menos compensar las funciones motoras y sensoriales que se deterioraron durante el accidente. El diagnóstico debe estar acompañado de la clínica y la imagenología, para así poder realizar un tratamiento efectivo e inmediato. A continuación, se presenta el caso de un paciente de 60 años, masculino, que a la edad de 46 años y durante las horas de la madrugada sufre un accidente cerebro vascular. Al momento del ingreso el paciente presenta síndrome isquémico cerebral izquierdo acompañado de afasia motora y de hemiplejia derecha. En tomografía axial computarizada simple de cráneo se descarta hemorragia, y se procede a iniciar terapia antitrombótica. El tratamiento inmediato permite una evolución muy favorable a los pacientes, incluso disminuyendo las secuelas neurológicas secundarias a la enfermedad.
Descargas
Citas
Lahue SC, Torres D, Rosendale N, Singh V. Stroke characteristics, risk factors, and outcomes in transgender adults. Neurologist [Internet]. 2019 Mar 1 [cited 2022 Nov 8];24(2):66–70. Available from: https://journals.lww.com/theneurologist/Abstract/2019/03000/Stroke_Characteristics,_Risk_Factors,_and_Outcomes.7.aspx
Putaala J. Ischemic Stroke in Young Adults. Continuum (N Y) [Internet]. 2020 [cited 2022 Nov 8];26(2):386–414. Available from: https://cdn.mednet.co.il/2020/04/Young-Stroke.pdf
Cramer SC. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol [Internet]. 2008 Mar [cited 2022 Nov 8];63(3):272–87. Available from: https://pubmed.ncbi.nlm.nih.gov/18383072/
Takatsuru Y, Nakamura K, Nabekura J. Compensatory contribution of the contralateral pyramidal tract after experimental cerebral ischemia. Front Neurol Neurosci [Internet]. 2013 [cited 2022 Nov 8];32:36–44. Available from: https://pubmed.ncbi.nlm.nih.gov/23859961/
Saini V, Guada L, Yavagal DR. Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology [Internet]. 2021 Nov 16 [cited 2022 Nov 8];97(20):S6–16. Available from: https://n.neurology.org/content/neurology/97/20_Supplement_2/S6.full.pdf
Revisión A de, Javier Páez D, Páez R. Código Ictus: Protocolo de Tratamiento del Ictus Cerebral Isquémico. Rev Ecuat Neurol [Internet]. 2014 [cited 2022 Nov 9];23(3):1–3. Available from: http://revecuatneurol.com/magazine_issue_article/codigo-ictus-protocolo-tratamiento-ictus-cerebral-isquemico/
Rabinstein AA. Treatment of Acute Ischemic Stroke. Continuum (N Y) [Internet]. 2017 [cited 2022 Nov 8];23(1):62–81. Available from: https://journals.lww.com/continuum/Abstract/2017/02000/Treatment_of_Acute_Ischemic_Stroke.9.aspx
Benavides Bautista PA, Sánchez Villacis L, Álvarez Mena P, Manzano Pérez VA, Zambrano Jordán D. Diagnóstico, imagenología y accidente cerebrovascular. Enfermería Investiga: Investigación, Vinculación, Docencia y Gestión [Internet]. 2018 Feb 4 [cited 2022 Nov 8];3(1 Sup):77–83. Available from: https://dialnet.unirioja.es/descarga/articulo/6282836.pdf
Larsen LH, Zibrandtsen IC, Wienecke T, Kjaer TW, Christensen MS, Nielsen JB, et al. Corticomuscular coherence in the acute and subacute phase after stroke. Clinical Neurophysiology [Internet]. 2017 Nov 1 [cited 2022 Nov 12];128(11):2217–26. Available from: https://pubmed.ncbi.nlm.nih.gov/28987993/
Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review [Internet]. Vol. 8, The Lancet Neurology. 2009 [cited 2022 Nov 12]. p. 741–54. Available from: https://pubmed.ncbi.nlm.nih.gov/19608100/
Miethe K, Iordanishvili E, Habib P, Panse J, Krämer S, Wiesmann M, et al. Imaging patterns of cerebral ischemia in hypereosinophilic syndrome: case report and systematic review. Neurological Sciences [Internet]. 2022 Aug 1 [cited 2022 Nov 8];43(8):5091–4. Available from: https://link.springer.com/article/10.1007/s10072-022-06134-4
Malferrari G, Zedde M, de Berti G, Maggi M, Marcello N. An unexpected evolution of symptomatic mild middle cerebral artery (MCA) stenosis: asymptomatic occlusion. BMC Neurol [Internet]. 2011 Dec 13 [cited 2022 Nov 8];11. Available from: https://bmcneurol.biomedcentral.com/articles/10.1186/1471-2377-11-154
Isordia-Salas I, Santiago-Germán D, Cerda-Mancillas MC, Hernández-Juárez J, Bernabe-García M, Leaños-Miranda A, et al. Gene polymorphisms of angiotensin-converting enzyme and angiotensinogen and risk of idiopathic ischemic stroke. Gene. 2019 Mar 10;688:163–70.
Feske SK. Ischemic Stroke. American Journal of Medicine [Internet]. 2021 Dec 1 [cited 2022 Nov 8];134(12):1457–64. Available from: https://pubmed.ncbi.nlm.nih.gov/34454905/
Ermine CM, Bivard A, Parsons MW, Jean-Claude Baron. The ischemic penumbra: From concept to reality [Internet]. Vol. 16, International Journal of Stroke. SAGE Publications Inc.; 2021 [cited 2022 Nov 11]. p. 497–509. Available from: https://pubmed.ncbi.nlm.nih.gov/33818215/
Morawetz RB, Degirolami U, Ojemann RG, Marcoux FW, Crowell RM. Cerebral Blood Flow Determined by Hydrogen Clearance During Middle Cerebral Artery Occlusion in Unanesthetized Monkeys 143. ahajournals [Internet]. 1978 [cited 2022 Nov 12];9:143–9. Available from: https://pubmed.ncbi.nlm.nih.gov/417429/
Jones TH, Morawetz RB, Crowell RM, Marcoux FW, Fitzgirbon SJ, Degirolami U, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg [Internet]. 1981 [cited 2022 Nov 12];54:773. Available from: https://pubmed.ncbi.nlm.nih.gov/7241187/
Astrup J, Siesjö BK, Symon L. Thresholds in cerebral ischemia — the ischemic penumbra [Internet]. Vol. 12, Stroke. 1981 [cited 2022 Nov 12]. p. 723–5. Available from: https://pubmed.ncbi.nlm.nih.gov/6272455/
Saver JL. Time is brain - Quantified [Internet]. Vol. 37, Stroke. 2006 [cited 2022 Nov 11]. p. 263–6. Available from: https://pubmed.ncbi.nlm.nih.gov/16339467/
Mattos DJS, Rutlin J, Hong X, Zinn K, Shimony JS, Carter AR. White matter integrity of contralesional and transcallosal tracts may predict response to upper limb task-specific training in chronic stroke. Neuroimage Clin [Internet]. 2021 Jan 1 [cited 2022 Dec 14];31. Available from: https://www.sciencedirect.com/science/article/pii/S2213158221001546?via%3Dihub
Okamoto Y, Ishii D, Yamamoto S, Ishibashi K, Wakatabi M, Kohno Y, et al. Relationship Between Motor Function, DTI, and Neurophysiological Parameters in Patients with Stroke in the Recovery Rehabilitation unit. Journal of Stroke and Cerebrovascular Diseases [Internet]. 2021 Aug 1 [cited 2022 Dec 14];30(8). Available from: https://pubmed.ncbi.nlm.nih.gov/34062310/
Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review) [Internet]. Vol. 49, International Journal of Molecular Medicine. Spandidos Publications; 2022 [cited 2022 Dec 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/34878154/
Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: Present status and future perspectives [Internet]. Vol. 21, International Journal of Molecular Sciences. MDPI AG; 2020 [cited 2022 Dec 14]. p. 1–24. Available from: https://pubmed.ncbi.nlm.nih.gov/33076218/
Jang SH, Cho MK. Relationship of Recovery of Contralesional Ankle Weakness with the Corticospinal and Corticoreticular Tracts in Stroke Patients. Am J Phys Med Rehabil [Internet]. 2022 Jul 1 [cited 2022 Dec 14];101(7):659–65. Available from: https://pubmed.ncbi.nlm.nih.gov/35706118/